4.6 Article

Magnetoresistance of magnetic tunnel junctions with low barrier heights

Journal

JOURNAL OF APPLIED PHYSICS
Volume 101, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2713369

Keywords

-

Ask authors/readers for more resources

The magnetoresistance of low-barrier magnetic tunnel junctions (MTJs) was studied within a two-band model of free electrons in ferromagnetic electrodes, taking into consideration image forces. For MTJs with an MgO insulator, explanations are given of the giant tunneling magnetoresistance (TMR) effect and the effect of increasing TMR as the width of the MgO barrier increases. It is shown that TMR and the electron current density through MTJs depend strongly on the dielectric constant of the MgO insulator. It is found that the TMR of low-barrier MTJs reaches a maximum at a particular value of the applied bias voltage. It is demonstrated that the electron current density through low-barrier MTJs can be high enough to switch the magnetization of a ferromagnetic electrode. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available