4.6 Article

Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study

Journal

PHYSICAL REVIEW B
Volume 75, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.113406

Keywords

-

Ask authors/readers for more resources

We report combined first-principle and tight-binding (TB) calculations to simulate the effects of chemical edge modifications on structural and electronic properties. The C-C bond lengths and bond angles near the graphene nanoribbon (GNR) edge have considerable changes when edge carbon atoms are bounded to different atoms. By introducing a phenomenological hopping parameter t(1) for nearest-neighbor hopping to represent various chemical edge modifications, we investigated the electronic structural changes of nanoribbons with different widths based on the tight-binding scheme. Theoretical results show that addends can change the band structures of armchair GNRs and even result in observable metal-to-insulator transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available