4.6 Article

Inelastic scattering in ferromagnetic and antiferromagnetic spin valves

Journal

PHYSICAL REVIEW B
Volume 75, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.014433

Keywords

-

Ask authors/readers for more resources

We use a ferromagnetic voltage probe model to study the influence of inelastic scattering on giant magnetoresistance and current-induced torques in ferromagnetic and antiferromagnetic metal spin valves. The model is based on the Green's function formulation of transport theory and represents spin-dependent and spin-independent inelastic scatterers by interior voltage probes that are constrained to carry respectively no charge current and no spin or charge current. We find that giant magnetoresistance and spin transfer torques in ferromagnetic metal spin valve structures survive arbitrarily strong spin-independent inelastic scattering, while the recently predicted analogous phenomena in antiferromagnetic metal spin valves are partially suppressed. We use toy-model numerical calculations to estimate spacer layer thickness requirements for room temperature operation of antiferromagnetic metal spin valves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available