4.7 Article

Addition of milk prevents vascular protective effects of tea

Journal

EUROPEAN HEART JOURNAL
Volume 28, Issue 2, Pages 219-223

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/eurheartj/ehl442

Keywords

endothelial function; nitric oxide; tea; milk; flow-mediated dilation

Ask authors/readers for more resources

Aims Experimental and clinical studies indicate that tea exerts protection against cardiovascular diseases. However, a question of much debate is whether addition of milk modifies the biological activities of tea. We studied the vascular effects of tea, with or without milk, in humans and elucidated the impact of individual milk proteins in cell culture experiments, with isolated rat aortic rings and by HPLC analysis. Methods and results A total of 16 healthy female volunteers consumed either 500 mL of freshly brewed black tea, black tea with 10% skimmed milk, or boiled water as control. Flow-mediated dilation (FMD) was measured by high-resolution vascular ultrasound before and 2 h after consumption. Black tea significantly improved FMD in humans compared with water, whereas addition of milk completely blunted the effects of tea. To support these findings, similar experiments were performed in isolated rat aortic rings and endothelial cells. Tea induced vasorelaxation in rat aortic rings and increased the activity of endothelial nitric oxide synthase by phosphorylation of the enzyme in endothelial cells. All effects were completely inhibited by the addition of milk to tea. Of the various kinds of milk proteins, the caseins accounted for these inhibiting effects of milk, probably by formation of complexes with tea catechins. Conclusion Milk counteracts the favourable health effects of tea on vascular function. This finding indicates the need for particular awareness in the interpretation and design of studies comprising nutritional flavonoids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available