4.5 Review

Cyclin dependent kinases in cancer Potential for therapeutic intervention

Journal

CANCER BIOLOGY & THERAPY
Volume 13, Issue 7, Pages 451-457

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cbt.19589

Keywords

cyclin-dependent kinases; cell cycle; CDK inhibitors; multiple myeloma; targeted therapies

Categories

Ask authors/readers for more resources

Cell cycle progression through each phase is regulated by heterodimers formed by cyclin-dependent kinases (CDKs) and their regulatory partner proteins, the cyclins. Together they coordinate the cellular events through cell cycle. De-regulation of cell cycle control due to aberrant CDK activity is a common feature of most cancer types. Intensive research on small molecules that target cell cycle regulatory proteins has led to the identification of many candidate inhibitors that are able to arrest proliferation and induce apoptosis in neoplastic cells as a promising strategy to treat cancer. Interestingly, cyclin-dependent kinases (CDKs) have also been proposed as therapeutic targets for Multiple Myeloma (MM). Overexpression and aberrant expression of the cyclins, specifically the D cyclins is seen in the majority of MM underscoring the value of exploring CDK inhibition in MM which currently remains an incurable neoplastic plasma-cell disorder. It is characterized by clonal proliferation of malignant plasma cells in the bone marrow micro-environment and associated organ dysfunction. Recent preclinical and early clinical data explore several CDK inhibitors in the context of MM. This review will provide an overview of the main classes of CDK inhibitors with a focus on their mechanism of action and discuss clinical and pharmacological implications of CDK inhibitors as possible therapeutic approaches for the treatment of cancer with specific consideration to MM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available