4.7 Article

Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid

Journal

PHYSICAL REVIEW E
Volume 75, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.011506

Keywords

-

Ask authors/readers for more resources

We develop a simple theory explaining the dependence of the gas-liquid critical point in the Stockmayer fluid on dipole strength. The theory is based on the Flory-Huggins lattice description for polymer systems in conjunction with a transfer matrix model for isolated chains of reversibly assembled dipolar particles. We find that the shift of the critical point as a function of dipole strength, which originally was found in computer simulation, strongly resembles the critical point shift as a function of chain length in ordinary linear polymer systems. In particular, the decrease of the critical density with increasing dipole strength is a consequence of the existence of reversible chains near criticality. In addition we report simulation results for gas-liquid critical points well above the limiting dipole strength found previously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available