4.5 Article

Chemotherapeutic sensitization by endoplasmic reticulum stress

Journal

CANCER BIOLOGY & THERAPY
Volume 8, Issue 2, Pages 146-152

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cbt.8.2.7087

Keywords

selenium; endoplasmic reticulum stress; taxanes; chemosensitization; prostate cancer

Categories

Funding

  1. National Cancer Institute [R01-CA09796]
  2. Roswell Park Alliance Foundation [62-2378-01]
  3. Roswell Park Cancer Center
  4. 1P30-CA016056
  5. NATIONAL CANCER INSTITUTE [P30CA016056, R01CA097963] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Taxanes are first line drugs for treating prostate cancer recurrence after the failure of anti-androgen therapy. There is a need to make taxanes more effective since they only provide palliative benefit. Exploiting endoplasmic reticulum (ER) stress death signaling to enhance drug efficacy has not been delineated. Human PC-3 cells were used as a model of hormone refractory prostate cancer. Thapsigargin and methylseleninic acid (MSA) were examined as sensitizers. Thapsigargin is a classic ER stress inducer. The activity of MSA in inducing ER stress has recently been studied by our group. The efficacy of single drug and the various combinations was evaluated by measuring apoptosis with a cell death ELISA kit. Thapsigargin increased the cell killing potency of paclitaxel or docetaxel by 10- to 12-fold, while MSA caused a 5- to 8-fold increase. Since thapsigargin is not used clinically because of its toxicity, the follow-up experiments were done with MSA. To test the hypothesis that a threshold level of ER stress is crucial to chemotherapeutic sensitization, three different approaches designed to dampen the severity of ER stress induced by MSA were examined. Lowering ER stress consistently attenuated the efficacy of MSA/taxane. GADD153 is a pro-apoptotic transcription factor which is upregulated during ER stress. Knocking down GADD153 by siRNA also reduced the cell killing effect of MSA/taxane. Both the intrinsic and extrinsic apoptotic pathways were involved in the sensitization mechanism. Our study supports the idea that marshalling ER stress apoptotic response is conducive to chemotherapeutic sensitization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available