4.7 Article

Jarzynski equality: Connections to thermodynamics and the second law

Journal

PHYSICAL REVIEW E
Volume 75, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.011133

Keywords

-

Ask authors/readers for more resources

The one-dimensional expanding ideal gas model is used to compute the exact nonequilibrium distribution function. The state of the system during the expansion is defined in terms of local thermodynamics quantities. The final equilibrium free energy, obtained a long time after the expansion, is compared against the free energy that appears in the Jarzynski equality. Within this model, where the Jarzynski equality holds rigorously, the free energy change that appears in the equality does not equal the actual free energy change of the system at any time of the process. More generally, the work bound that is obtained from the Jarzynski equality is an upper bound to the upper bound that is obtained from the first and second laws of thermodynamics. The cancellation of the dissipative (nonequilibrium) terms that result in the Jarzynski equality is shown in the framework of response theory. This is used to show that the intuitive assumption that the Jarzynski work bound becomes equal to the average work done when the system evolves quasistatically is incorrect under some conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available