4.7 Article

Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets

Journal

DIABETES
Volume 56, Issue 1, Pages 65-71

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db06-0734

Keywords

-

Ask authors/readers for more resources

Insulin secretion from the 2,000-3,000 beta-cells in an islet is a highly synchronized activity with discharge of insulin in coordinate secretory bursts at approximately 4-min intervals. Insulin secretion progressively declines in type 2 diabetes and following islet transplantation. Both are characterized by the presence of islet amyloid derived from islet amyloid polypeptide (IAPP). In the present studies, we examined the action of extracellular human IAPP (h-IAPP) on morphology and function of human islets. Because oligomers of h-IAPP are known to cause membrane disruption, we questioned if application of h-IAPP oligomers to human islets would lead to disruption of islet architecture (specifically cell-to-cell adherence) and a decrease in coordinate function (e.g., increased entropy of insulin secretion and diminished coordinate secretory bursts). Both hypotheses are affirmed, leading to a novel hypothesis for impaired insulin secretion in type 2 diabetes and following islet transplantation, specifically disrupted cell-to-cell adherence in islets through the actions of membrane-disrupting IAPP oligomers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available