4.7 Article

Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil?

Journal

JOURNAL OF ECOLOGY
Volume 104, Issue 1, Pages 261-269

Publisher

WILEY
DOI: 10.1111/1365-2745.12496

Keywords

isotopes; litter decomposition; plant-soil (below-ground) interactions; priming; saprobic fungi; soil carbon

Funding

  1. Czech Ministry of Education, Youth and Sports [LK11224]
  2. Fellowship J.E. Purkyne
  3. long-term development programme [RVO61388971]
  4. Marie Curie IEF grant (Nanosoil)
  5. Swedish Research Council VR

Ask authors/readers for more resources

1. Fine roots and mycorrhiza often represent the largest input of carbon (C) into soils and are therefore of primary relevance to the soil C balance. Arbuscular mycorrhizal (AM) fungi have previously been found to increase litter decomposition which may lead to reduced soil C stocks, but these studies have focused on immediate decomposition of relatively high amounts of high-quality litter and may therefore not hold in many ecological settings over longer terms. 2. Here, we assessed the effect of mycorrhizal fungi on the fate of C and nitrogen (N) contained within a realistic amount of highly C-13-/N-15-labelled root litter in soil. This litter was either added fresh or after a 3-month incubation period under field conditions to a hyphal in-growth core where mycorrhizal abundance was either reduced or not through rotation. After 3 months of incubation with a plant under glasshouse conditions, the effect of turning cores on residual C-13 and N-15 inside the cores was measured, as well as C-13 incorporation in microbial signature fatty acids and N-15 incorporation of plants. 3. Turning of cores increased the abundance of fungal decomposers and C-13 loss from cores, while N-15 content of cores and plants was unaffected. Despite the difference in disturbance that turning the cores could have caused, the results suggest that mycorrhizal fungi and field incubation of litter acted to additively increase the proportion of C-13 left in cores. 4. Synthesis. Apart from stimulating litter decomposition as previously shown, mycorrhizas can also stabilize C during litter decomposition and this effect is persistent through time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available