4.5 Article

Dichloroacetate causes reversible demyelination in vitro: potential mechanism for its neuropathic effect

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 100, Issue 2, Pages 429-436

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1471-4159.2006.04248.x

Keywords

dorsal root ganglia neurons; myelin; myelination; neurofilament; peripheral neuropathy; Schwann cells

Funding

  1. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [P42ES007375, R01ES007355] Funding Source: NIH RePORTER
  2. NIEHS NIH HHS [ES07375, R01 ES07355] Funding Source: Medline

Ask authors/readers for more resources

Dichloroacetate (DCA) is an investigational drug for genetic mitochondrial diseases whose use has been mitigated by reversible peripheral neuropathy. We investigated the mechanism of DCA neurotoxicity using cultured rat Schwann cells (SCs) and dorsal root ganglia (DRG) neurons. Myelinating SC-DRG neuron co-cultures, isolated SCs and DRG neurons were exposed to 1-20 mM DCA for up to 12 days. In myelinating co-cultures, DCA caused a dose- and exposure-dependent decrease of myelination, as determined by immunolabeling and immunoblotting for myelin basic protein (MBP), protein zero (P0), myelin-associated glycoprotein (MAG) and peripheral myelin protein 22 (PMP22). Partial recovery of myelination occurred following a 10-day washout of DCA. DCA did not affect the steady-state levels of intermediate filament proteins, but promoted the formation of anti-neurofilament antibody reactive whirls. In isolated SC cultures, DCA decreased the expression of P0 and PMP22, while it increased the levels of p75(NTR) (neurotrophin receptor), as compared with non-DCA-treated samples. DCA had modest adverse effects on neuronal and glial cell vitality, as determined by the release of lactate dehydrogenase. These results demonstrate that DCA induces a reversible inhibition of myelin-related proteins that may account, at least in part, for its clinical peripheral neuropathic effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available