4.3 Review

Factors critical for the plasticity of dendritic spines and memory storage

Journal

NEUROSCIENCE RESEARCH
Volume 57, Issue 1, Pages 1-9

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neures.2006.09.017

Keywords

two-photon; synapse; memory; long-term potentiation; long-term depression; calcium

Categories

Ask authors/readers for more resources

The structure of dendritic spines is highly plastic and responds to synaptic activity, including activity patterns that induce long-term potentiation (LTP) and depression (LTD). Induction of LTP causes enlargement of spine heads, while LTD causes spine head shrinkage. In addition, spine structure is well associated with synaptic weight and the extent of synaptic plasticity, such that structural changes of the spine may represent forms of memory storage. While the correlation between structural and functional plasticity appears to be simple, the underlying mechanisms of spine plasticity are intricate. Spine plasticity requires multiple molecular interactions, and is affected by the surrounding environment and by cellular metabolic state. Here, I synthesize the latest progress in this field by defining six determinants of spine plasticity, and discuss the role of each factor in memory storage. (c) 2006 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available