4.7 Review

Contortions of encapsulated alkyl groups

Journal

CHEMICAL COMMUNICATIONS
Volume -, Issue 27, Pages 2777-2789

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b617548a

Keywords

-

Funding

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM050174] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [GM 29372, GM 50174] Funding Source: Medline

Ask authors/readers for more resources

Rotors are recalled as early molecular devices that transmit information through changes in conformation. Specific cases involve bipyridyls and biphenyls in which the biaryl bond acts as a fulcrum to relay applied stresses from one site to another. New types of molecular stress encountered by encapsulated molecules are identified - including bending, straightening, squeezing, grinding and compression. For flexible molecules in reversibly formed capsules a fluid model of recognition is proposed that is neither lock-and-key nor induced fit. Instead, the guest assumes the shape that best fills the available space, even if contortions to higher energy conformations are required. For encapsulated alkanes, a delicate balance of attraction and repulsion exists when the size of a guest molecule approaches the space available to it. The complexes are analyzed by both NMR and computational methods and detailed maps of the host - guest interfaces in solution are provided. The reversible transition of an encapsulated alkane between a compressed, coiled conformation and a relaxed, extended one is described. The system is a spring-loaded molecular device under the control of acids and bases that offers an alternative to the rotors of current molecular machinery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available