4.4 Article

Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: Domain composition, intracellular localization, and function in male germ cells in mice

Journal

DEVELOPMENTAL BIOLOGY
Volume 301, Issue 1, Pages 38-52

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2006.10.046

Keywords

germ cell; spermatogenesis; Tdrd; Tudor; Mvh; vasa; intermitochondrial cement; chromatoid body; nuage; electroporation

Ask authors/readers for more resources

The germ-line cells of many animals possess a characteristic cytoplasmic structure termed nuage or germinal granules. In mice, nuage that is prominent in postnatal male germ cells is also called intermitochondrial cement or chrornatoid bodies. TDRD1/MTR-1, which contains Tudor domain repeats, is a specific component of the mouse nuage, analogously to Drosophila Tudor, a constituent of polar granules/nuage in oocytes and embryos. We show that TDRD6 and TDRD7/TRAP, which also contain multiple Tudor domains, specifically localize to nuage and form a ribonucleoprotein complex together with TDRD1/MTR-1. The characteristic co-localization of TDRD1, 6 and 7 was disrupted in a mutant of mouse vasa homologue/DEAD box potypeptide 4 (Mvh/Ddx4), which encodes another evolutionarily conserved component of nuage. In vivo over-expression experiments of the TDRD proteins and truncated forms during male germ cell differentiation showed that a single Tudor domain is a structural unit that localizes or accumulates to nuage, but the expression of the truncated, putative dominant negative forms is detrimental to meiotic spermatocytes. These results indicate that the Tudor-related proteins, which contain multiple repeats of the Tudor domain, constitute an evolutionarily conserved class of nuage components in the germ-line, and their localization or accumulation to nuage is likely conferred by a Tudor domain structure and downstream of Mvh, while the characteristic repeated architecture of the domain is functionally essential for the differentiation of germ cells. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available