4.7 Article

Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica

Journal

PLANT AND CELL PHYSIOLOGY
Volume 48, Issue 1, Pages 8-18

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcl041

Keywords

Coptis japonica; functional genomics; isoquinoline alkaloid biosynthesis; transcriptional regulation; transient RNAi; WRKY

Ask authors/readers for more resources

Selected cultured Coptis japonica cells produce a large amount of the benzylisoquinoline alkaloid berberine. Previous studies have suggested that berberine productivity is controlled at the transcript level of biosynthetic genes. We have identified a regulator of transcription in berberine biosynthesis using functional genomics with a transient RNA interference (RNAi) and overexpression of the candidate gene. The 24 primary candidate clones were selected from 1,014 expressed sequence tags (ESTs) that were obtained from a C. japonica cell line producing high levels of berberine. Further characterization of the expression profiles of these ESTs suggested that five ESTs would be good candidates as regulators of berberine production. A newly developed transient RNAi system with C. japonica protoplasts indicated that double-stranded RNA of an EST clone significantly reduced the level of transcripts of 3'-hydroxy N-methylcoclaurine 4'-O-methyltransferase. Sequence analysis showed that this EST encoded a group-II WRKY, and we named it CjWRKY1. When the effects of double-stranded RNA of the CjWRKY1 gene were examined in detail, a marked reduction in the transcripts of all genes involved in berberine biosynthesis was detected, whereas little effect was found in the transcript levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and chorismate mutase (CM) that are associated with primary metabolism. Ectopic expression of CjWRKY1 cDNA in C. japonica protoplasts clearly increased the level of transcripts of all berberine biosynthetic genes examined compared with control treatment, whereas the levels of GAPDH and CM were not affected. The functional role of CjWRKY1 as a specific and comprehensive regulator of berberine biosynthesis is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available