4.7 Article

Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria

Journal

FOOD CHEMISTRY
Volume 100, Issue 4, Pages 1552-1559

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2005.12.040

Keywords

hyperoxaluria; sulfated polysaccharides; Fucus vesiculosus; lipid peroxidation; antioxidants

Ask authors/readers for more resources

Sulfated polysaccharides from marine algae are known to possess numerous properties of pharmacological importance. The present study is an attempt to evaluate the efficacy of the sulfated polysaccharides from edible seaweed, Fucus vesiculosus in ameliorating the abnormal biochemical changes in experimental hyperoxaluria. Two groups of. male albino rats of Wistar strain (140 20 g) received 0.75% ethylene glycol for 28 days to induce hyperoxaluria, and one of them received sulfated polysaccharides (fucoidan from F vesiculosus, 5 mg/kg b.wt., s.c.) treatment, commencing from the 8th day of the experimental period. One group was maintained as a control group and another group served as a drug control, which received only sulfated polysaccharides. Incongruity in the renal tissue enzymes (ALP, beta-Glu and gamma-GT) were observed during hyperoxaluria along with an increased activity of oxalate metabolizing enzymes like LDH, GAO and XO. These changes were reverted to near normalcy with sulfated polysaccharide administration. Alterations were observed in the activities/levels of tissue enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and glucose-6-phosphate dehydrogenase) and non-enzymic (reduced glutathione, ascorbate and alpha-tocopherol) antioxidants, along with high malondialdehyde levels in the hyperoxaluric group. However, normalized lipid peroxidation status and antioxidant defences were noticed with sulfated polysaccharide administration. Biochemical discrepancies observed in hyperoxaluria disrupt membrane integrity, favouring a milieu for crystal retention. Advocation of sulfated polysaccharides enhanced the antioxidant status, thereby preventing membrane injury and alleviating the microenvironment favourable for stone formation. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available