4.8 Article

Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy

Journal

ANALYTICAL CHEMISTRY
Volume 79, Issue 1, Pages 176-182

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac061332a

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [GR/T11555/01] Funding Source: researchfish

Ask authors/readers for more resources

Cyclic voltammetry and impedance spectroscopy were employed to probe the responsive properties of polyelectrolyte brushes. Poly[(dimethylamino)ethyl methacrylate] (PDMAEMA) brushes over 100 nm thick on gold substrates were synthesized via surface-initiated atom-transfer radical polymerization and quaternized with methane iodide to obtain cationic brushes (Q-PDMAEMA). Q-PDMAEMA brushes respond to electrolytes by exhibiting swollen and collapsed states. Swollen brushes allow good permeability of electroactive probes, while collapsed states block electron transport. Electrolytes have different impacts on the electrochemical properties of Q-PDMAEMA. Some salts (NaNO3) cause brush collapse due to charge screening, while others such as those with more hydrophobic anions (ClO4-, PF6-, and Tf2N-) induce brush collapse because of solubility changes. The collapsed brushes exhibit intrinsically different resistance as probed with impedance. Charged screened brushes retain good permeability to electroactive probes. Strongly coordinating hydrophobic anions lead to insoluble brushes, resulting in a high resistance. These results show that electrochemical impedance spectroscopy is a powerful technique to probe the properties and structure of polyelectrolyte brushes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available