4.6 Article

Reliable long-lasting depression interacts with variable short-term facilitation to determine corticostriatal paired-pulse plasticity in young rats

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 580, Issue 1, Pages 225-240

Publisher

WILEY
DOI: 10.1113/jphysiol.2006.115790

Keywords

-

Funding

  1. NATIONAL INSTITUTE ON AGING [R29AG012679, R01AG021937] Funding Source: NIH RePORTER
  2. NIA NIH HHS [R01 AG021937, AG12679, AG21937] Funding Source: Medline

Ask authors/readers for more resources

Synaptic plasticity at corticostraital synapses is proposed to fine tune movment and improve motor skills. We found paired-pulse plasticity at corticostriatal synapses reflected variably expressed short-term facilitation blended with a consistent background of longer-lasting depression. Presynaptic modulation via neuotransmitter receptor activation was ruled out as a mechanism for long-lasting paired-pulse depression by examining the effect of selective receptor antagonists. EPSC amplitude and paired-pulse plasticity, however, was influenced by block of D2 dopamine receptors. Block of glutamate transport with L-transdicarboxylic acid (PDC) reduced EPSCs, possibly through a mechanism of AMPA receptor desensitization. Removal of AMPA receptor desensitization with cyclothiazide reduced the paired-pulse depression at long-duration interstimulus intervals (ISIs), indicating that AMPA receptor desensitization participates in corticostriatal paired-pulse plasticity. The low-affinity glutamate receptor antagonist cis-2,3-piperidine dicarboxylic acid (PDA) increased paired-pulse depression, suggesting that a presynaptic component also exists for long-lasting paired-pulse depression. Low Ca2+-high Mg2+ or BAPTA-AM dramatically reduced the amplitude of corticostriatal EPSCs and both manipulations increased the expression of facilitation and, to a lesser extent, they reduced long-lasting paired-pulse depression. EGTA-AM produced a smaller reduction in EPSC amplitude and it did not alter paired-pulse facilitation, but in contrast to low Ca2+ and BAPTA-AM, EGTA-AM increased long-lasting paired-pulse depression. These experiments suggest that facilitation and depression are sensitive to vesicle depletion, which is dependent upon changes in peak Ca2+ (i.e. low Ca2+-high Mg2+ or BAPTA-AM). In addition, the action of EGTA-AM suggests that basal Ca2+ regulates the recovery from long-lasting paired-pulse depression, possibly thourgh a Ca2+-sensitive process of vesicle delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available