4.5 Review

Modulation of glucose transport in skeletal muscle by reactive oxygen species

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 102, Issue 4, Pages 1671-1676

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01066.2006

Keywords

exercise; adenosine 5 '-monophosphate-activated protein kinase

Ask authors/readers for more resources

Glucose transport is an essential physiological process that is characteristic of all eukaryotic cells, including skeletal muscle. In skeletal muscle, glucose transport is mediated by the GLUT-4 protein under conditions of increased carbohydrate utilization. The three major physiological stimuli of glucose transport in muscle are insulin, exercise/contraction, and hypoxia. Here, the role of reactive oxygen species (ROS) in modulating glucose transport in skeletal muscle is reviewed. Convincing evidence for ROS involvement in insulin- and hypoxia-mediated transport in muscle is lacking. Recent experiments, based on pharmacological and genetic approaches, support a role for ROS in contraction-mediated glucose transport. During contraction, endogenously produced ROS appear to mediate their effects on glucose transport via AMP-activated protein kinase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available