4.5 Article

Reduced levels of ATF-2 predispose mice to mammary tumors

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 27, Issue 5, Pages 1730-1744

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01579-06

Keywords

-

Ask authors/readers for more resources

Transcription factor ATF-2 is a nuclear target of stress-activated protein kinases, such as p38, which are activated by various extracellular stresses, including UV light. Here, we show that ATF-2 plays a critical role in hypoxia- and high-cell-density-induced apoptosis and the development of mammary tumors. Compared to wild-type cells, Atf-2(-/-) mouse embryonic fibroblasts (MEFs) were more resistant to hypoxia- and anisomycin-induced apoptosis but remained equally susceptible to other stresses, including UV. Atf-2(-/-) and Atf-2(+/-) MEFs could not express a group of genes, such as Gadd45 alpha, whose overexpression can induce apoptosis, Atf-2(-/-) MEFs also had a higher saturation density than wild-type cells and expressed response to hypoxia. At lower levels of Maspin, the breast cancer tumor suppressor, which is also known to enhance cellular sensitivity to apoptotic stimuli. Atf-2(-/-) MEFs underwent a lower degree of apoptosis at high cell density than wild-type cells. Atf-2(+/-) mice were highly prone to mammary tumors that expressed reduced levels of Gadd45 alpha and Maspin. The ATF-2 mRNA levels in human breast cancers were lower than those in normal breast tissue. Thus, ATF-2 acts as a tumor susceptibility gene of mammary tumors, at least partly, by activating a group of target genes, including Maspin and Gadd45 alpha.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available