4.6 Article

Stereochemical consequences of threefold symmetry in asymmetric catalysis: Distorting C-3 chiral 1,1,1-tris(oxazolinyl)ethanes (Trisox) in Cu-II Lewis acid catalysts

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 13, Issue 35, Pages 9912-9923

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200701085

Keywords

asymmetric catalysis; chirality; copper; threefold symmetry; trisoxazolines

Ask authors/readers for more resources

The underlying conceptual differences in exploiting two- and threefold rotational symmetry in the design of chiral ligands for asymmetric catalysis have been addressed in a comparative study of the catalytic performance of bisoxazoline (BOX) and tris(oxazolinyl)ethanes (trisox) containing copper(II) Lewis acid catalysts. The differences become apparent in constructing new catalysts by systematically deforming the stereodirecting ligand by inverting chiral centres or replacing chiral by achiral oxazolines. The catalytic alpha-amination of ethyl 2-methylacetoacetate with dibenzyl azodicaboxylate, which occurs with high en anti oselectivity for both Ph-2-BOX and Ph-3-trisox copper catalysts, has been employed as the test reaction. In the trisox-copper complex [Cu-II(iPr(3)- trisox)(kappa(2)-O,O'-MeCOCHCOOEt)](+) [BF4](-) (1), which was characterised by X-ray diffraction, two of the oxazoline groups are coordinated to the central copper atom, whilst the third oxazoline unit is dangling with the N-donor pointing away from the metal centre. A similar arrangement is found for the stereochemically mixed C-1-trisox complex [Cu-II{(Ph-3-triox(R,S,S)}(kappa(2)-O,O'-MeCOCHCOOEt)(H2O)](+) [ClO4](-) (2), in which the phenyl substituents adopt a first coordination sphere meso arrangement. The almost identical selectivity of the Ph-3-trisox(R,R,R)- and Ph-2-BOX(R,R)-derived catalysts is as expected from the proposed model of the active catalyst based on a partially decoordinated podand. The behaviour of the desymmetrised trisox-Cu catalysts may be rationalised in terms of a general steady-state kinetic model for the three possible active bisoxazoline-copper species, which are expected to be in rapid exchange with each other in solution. This applies to both the trisox derivatives with stereochemically inverted and achiral oxazoline rings. The study underscores previous observations of superior performance of the catalysts bearing C-3-chiral stereodirecting ligands as compared to systems of lower symmetry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available