4.6 Article

Preparation and characterization of a novel organic-inorganic nanohybrid cerasome formed with a liposomal membrane and silicate surface

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 13, Issue 18, Pages 5272-5281

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200700175

Keywords

lipid bilayers; organic-inorganic hybrid composites; self-assembly; sol-gel processes

Ask authors/readers for more resources

A novel class of organic-inorganic hybrids, the so-called cerasomes, which have a bilayer vesicular structure and a silicate surface, has been synthesized by combination of sol-gel reaction and self-assembly of organoalkoxysilanes with a molecular structure analogous to lipids. We have synthesized two cerasome-forming organoalkoxysilanes, N-[N-(3-triethoxysilyl)propylsuccinamoyl]dihexadecylamine (1) and N,N-dihexadecyl-N-alpha-[6[(3-triethoxysilyl)propyldimethylammonio]hexanoyl]glycinamide bromide (2), and investigated the synthetic conditions of the cerasomes and their structural characteristics. For the proamphiphilic 1, the cerasome was obtained under restricted pH conditions where acid-catalyzed hydrolysis of the triethoxysilyl moiety proceeded without disturbing the vesicle formation. In contrast, the amphiphilic 2, additionally having a hydrophilic quaternary ammonium group, formed stable dispersions of the cerasome in a wide pH range. The hydrolysis behavior of the triethoxysilyl groups was monitored by H-1 NMR spectroscopy. Morphology of the cerasomes having the liposomal vesicular structure was confirmed by TEM observations. Extent of the development of siloxane networks through condensation among the silanol groups on the cerasome surface was evaluated by using MALDI-TOF-MS spectrometry. Formation of oligomers of the cerasome-forming lipids in the vesicle was clearly confirmed. Due to the siloxane network formation, the cerasome showed remarkably high morphological stability compared with a reference liposome, as evaluated by surfactant dissolution measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available