4.6 Article

Prediction of dry-wet-dry transition in polymer electrolyte fuel cells

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 154, Issue 3, Pages B316-B321

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.2429036

Keywords

-

Ask authors/readers for more resources

L Condensation and evaporation fronts co-exist in present-day automotive polymer electrolyte fuel cells (PEFCs) where low-humidity reactant gases are fed in counterflow. Capturing of such a transition between a single- and a two-phase regime is not only of technological significance, but also represents a great numerical challenge in PEFC modeling. In this work we demonstrate a computational capability to predict the dry-wet-dry transition in a PEFC based on the multiphase mixture (M-2) framework. The M-2 model is a three-dimensional, two-phase, and multicomponent full-cell model featuring a detailed membrane-electrode assembly (MEA) sub-model. Three-dimensional results on the dry-wet-dry transition under low-humidity operation and in counterflow are presented. The dry-to-wet transition described in this work provides a benchmark problem to develop and test future generation PEFC models. (c) 2007 The Electrochemical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available