4.5 Article

Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 102, Issue 1, Pages 221-230

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01385.2005

Keywords

computational model; airway closure; asthma; mouse models of asthma

Funding

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR015557] Funding Source: NIH RePORTER
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL075593, R01HL067273] Funding Source: NIH RePORTER
  3. NCRR NIH HHS [P20-RR-15557] Funding Source: Medline
  4. NHLBI NIH HHS [R01-HL-75593, R01-HL-67273] Funding Source: Medline

Ask authors/readers for more resources

Airway hyperresponsiveness ( AHR) is a defining feature of asthma. We have previously shown, in mice sensitized and challenged with antigen, that AHR is attributable to normal airway smooth muscle contraction with exaggerated airway closure. In the present study we sought to determine if the same was true for mice known to have intrinsic AHR, the genetic strain of mice, A/J. We found that A/J mice have AHR characterized by minimal increase in elastance following aerosolized methacholine challenge compared with mice ( BALB/c) that have been antigen sensitized and challenged [ concentration that evokes 50% change in elastance ( PC50): 22.9 +/- 5.7 mg/ml for A/J vs. 3.3 +/- 0.4 mg/ml for antigen-challenged and -sensitized mice; P < 0.004]. Similar results were found when intravenous methacholine was used ( PC30 0.22 +/- 0.08 mg/ml for A/J vs. 0.03 +/- 0.004 mg/ml for antigen-challenged and -sensitized mice). Computational model analysis revealed that the AHR in A/J mice is dominated by exaggerated airway smooth muscle contraction and that when the route of methacholine administration was changed to intravenous, central airway constriction dominates. Absorption atelectasis was used to provide evidence of the lack of airway closure in A/J mice. Bronchoconstriction during ventilation with 100% oxygen resulted in a mean 9.8% loss of visible lung area in A/J mice compared with 28% in antigen-sensitized and -challenged mice ( P < 0.02). We conclude that the physiology of AHR depends on the mouse model used and the route of bronchial agonist administration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available