4.3 Article

Dynamic substance flow analysis of aluminum and its alloying elements

Journal

MATERIALS TRANSACTIONS
Volume 48, Issue 9, Pages 2518-2524

Publisher

JAPAN INST METALS
DOI: 10.2320/matertrans.MRA2007102

Keywords

material flow analysis; substance flow analysis; aluminum alloy; alloy content; aluminum scraps; population balance model

Ask authors/readers for more resources

Aluminum demand in Japan has grown significantly during the last few decades. For most uses, small amounts of other metals are added to the primary aluminum to make harder alloys, which are classified by the nature and concentrations of their alloying elements. Aluminum scraps from end-of-life products, which are used as raw materials for secondary aluminum, are often mixtures of several alloys. Therefore, not only the amount of scrap but also the concentrations of their alloying elements must be taken into account when assessing the maximum recycle rate of aluminum scraps. This paper reports a dynamic substance flow analysis of aluminum and its alloying elements in Japan, focusing on the alloying elements Si, Fe, Cu and Mn. We devised eight categories of aluminum end uses and 16 types of aluminum alloys. The amount of each alloy in each end-use category was estimated from statistical data. We then estimated future quantities of discarded aluminum in each of the eight categories using the population balance model. At the same time, we calculated the concentrations of the alloying elements in each of the end uses. It was estimated that the amount of aluminum recovered in Japan would be about 1800 kt in 2050, which is 2.12 times that recovered in 1990. Calculated concentrations of alloying elements in aluminum scraps showed good correlation with those of the measured data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available