4.5 Article

Influence of macrophyte species on microbial density and activity in constructed wetlands

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 56, Issue 3, Pages 249-254

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2007.510

Keywords

constructed wetlands; microbial activity; microbial density; plant species; rhizosphere

Ask authors/readers for more resources

It is often assumed that planted wastewater treatment systems outperform unplanted ones, mainly because plants stimulate belowground microbial population. Yet, fundamental interactions between plants and associated microorganisms remain only partly understood. The aim of our project was to evaluate microbial density and activity associated to the rhizosphere of three plant species. Experimental set-up, in six replicates, consisted of four 1.8-L microcosms respectively planted in monoculture of Typha angustifolia, Phragmites australis, Phalaris arundinacea and unplanted control. Plants were grown for two months with 25 L m(-2)d(-1) of secondary effluent (in g m(-2)d(-1): 1.3 TSS, 7.5 COD, 1.0 TKN). Sampling of substrate, roots and interstitial water was made according to depth (0-10, 10-20 cm). Biofilm was extracted with 500 mL of a buffer solution. Microbial density was directly estimated by flow cytometry and indirectly by protein measurements. Biological activity was determined using respirometry assays, dehydrogenase and enzymatic activity measurements. Our results show that microbial density and activity are higher in the presence of plants, with significantly higher values associated with Phalaris arundinacea. Greater density of aerobic or facultative bacteria was present in planted microcosm, particularly on root surface, suggesting root oxygen release. Microbes were present on substrate and roots as an attached biofilm and abundance was correlated to root surface throughout depth. Plant species root morphology and development seem to be a key factor influencing microbial-plant interaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available