4.6 Review

Ultrafast dynamics of halogens in rare gas solids

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 9, Issue 7, Pages 779-801

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b609058n

Keywords

-

Ask authors/readers for more resources

We perform time resolved pump-probe spectroscopy on small halogen molecules ClF, Cl-2, Br-2, and I-2 embedded in rare gas solids (RGS). We find that dissociation, angular depolarization, and the decoherence of the molecule is strongly influenced by the cage structure. The well ordered crystalline environment facilitates the modelling of the experimental angular distribution of the molecular axis after the collision with the rare gas cage. The observation of many subsequent vibrational wave packet oscillations allows the construction of anharmonic potentials and indicate a long vibrational coherence time. We control the vibrational wave packet revivals, thereby gaining information about the vibrational decoherence. The coherence times are remarkable larger when compared to the liquid or high pressure gas phase. This fact is attributed to the highly symmetric molecular environment of the RGS. The decoherence and energy relaxation data agree well with a perturbative model for moderate vibrational excitation and follow a classical model in the strong excitation limit. Furthermore, a wave packet interferometry scheme is applied to deduce electronic coherence times. The positions of those cage atoms, excited by the molecular electronic transitions are modulated by long living coherent phonons of the RGS, which we can probe via the molecular charge transfer states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available