4.5 Review

Kohlrausch regulating function and other conservation laws in electrophoresis

Journal

ELECTROPHORESIS
Volume 28, Issue 1-2, Pages 3-14

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/elps.200600513

Keywords

conservation law; eigenmobility; electromigration; regulating function; system zone

Ask authors/readers for more resources

The Kohlrausch regulating function (KRF) is a conservation law (conservation function), which is held in electrophoresis and which enables calculation of the so-called adjusted concentrations of constituents. The KRF is not the only conservation function and, depending on the complexity of the electrophoretic system, other conservation laws may be obeyed having a broader range of applicability. The conservation laws are tightly related to system eigennnobilities and system zones (system peaks). In principle, no system eigenmobility is exactly zero, but in most practical cases at least one system's eigenmobility is close to zero. The existence of the close-to-zero eigenmobility inherently points to the existence of a conservation function and a system zone which is stationary. The stationary system zone is called injection zone, stagnant zone, water peak, or solvent dip. Electrophoretic (electromigration) systems can be divided into two types: (i) conservation systems, in which the absolute value of at least one system eigenmobility is close to zero and where at least one conservation law is obeyed and (ii) nonconservation systems, where no system eigenmobility is close to zero and no conservation law is obeyed. The paper reviews work dealing with conservation functions in electromigration, derives some historical conservation functions in a new way, derives several conservation functions for systems of multivalent electrolytes, and discusses electrophoretic systems that have nonconservation behavior. In some typical instances, the conservation functions are simulated by means of a dynamic simulation tool and depicted graphically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available