4.3 Article

New classes of Si-based photonic materials and device architectures via designer molecular routes

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 17, Issue 17, Pages 1649-1655

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b618416b

Keywords

-

Ask authors/readers for more resources

Ge/Sn-based group IV semiconductors with tunable band gaps across the wide IR range were synthesized using designer hydrides with tailored Si, Ge and Sn stoichiometries and structures. GeSn, SiGeSn, SiSn and SiGeSn/Ge heterostructures undergo indirect to direct band gap transitions via strain engineering and alloy composition tuning, providing the basis for integration of microelectronics with optical components into a single chip. SiGeSn systems also enable buffer layer technologies with unprecedented lattice and thermal matching capabilities for applications in monolithic integration of III - V semiconductors with Si electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available