4.6 Article

A molecular dynamics study of structural relaxation in tetrahedrally coordinated nanocrystals

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 9, Issue 19, Pages 2355-2361

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b701267e

Keywords

-

Ask authors/readers for more resources

The reorganisation of nanocrystals in order to reduce their surface energies has been examined in computer simulations. The relaxation takes a qualitatively different path for sphalerite- and wurtzite-structured particles. The surfaces of the sphalerite particles reconstruct into hexagonal nets, but the interior remains identifiable as sphalerite-like, whereas wurtzite particles form facetted, hexagonal nanorods by virtue of a reorganisation of the whole particle which involves the creation of a low energy internal interface between oppositely oriented domains. Despite the reorganisation, the diffraction patterns remain compatible with a wurtzite structure with some internal strain. The dipole moments of thermalized wurtzite particles are compared with experimental results for CdSe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available