4.2 Article

Role of biological habitat amelioration in altering the relative responses of congeneric species to climate change

Journal

MARINE ECOLOGY PROGRESS SERIES
Volume 334, Issue -, Pages 11-19

Publisher

INTER-RESEARCH
DOI: 10.3354/meps334011

Keywords

biological interactions; biologically generated habitat; climate change; climate envelope; limpets; macroalgae

Ask authors/readers for more resources

The distribution of most species is expected to alter in response to climate change. Predictions for the extent of these range shifts are frequently based on 'climate envelope' approaches, which often oversimplify species responses because many do not consider interactions between physical and biological factors. The local persistence of some species, however, is likely to be strongly modulated by microhabitat-forming organisms. Using congeneric patellid gastropods with northern/ boreal and southern/lusitanian distributions, we have demonstrated how the loss of habitat-forming macroalgal species could modify species responses to climate change. The northern limpet Patella vulgata preferentially aggregates beneath Fucus spp. When Fucus vesiculosus was experimentally removed, to simulate a decline in macroalgal abundance in response to climatic warming, P. vulgata suffered increased mortality or relocated home scars, often to nearby Fucus spp. patches. In contrast, the southern limpet P. depressa did not aggregate beneath Fucus spp. and showed no response in terms of movement or mortality to the loss of F vesiculosus. Based on these results, we predict that the loss of Fucus spp. will influence the relative abundance of these 2 limpet species, particularly at the distributional limit of Fucus spp. In addition, differences in the aggregative behaviour of these limpet species will result in changes in the spatial distribution of grazing in the intertidal, with likely consequences for community dynamics. These outcomes could not be anticipated from predictions based on direct responses to temperature alone, highlighting the need for biotic and abiotic factors to be incorporated into predictions of species responses to climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available