4.6 Article

The mechanism of H-bond rupture: the vibrational pre-dissociation of C2H2-HCl and C2H2-DCl

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 9, Issue 47, Pages 6241-6252

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b710967a

Keywords

-

Ask authors/readers for more resources

Pair correlated fragment rovibrational distributions are presented following vibrational predissociation of the C2H2-DCl van der Waals dimer initiated by excitation of the asymmetric (asym) C-H stretch. The only observed fragmentation pathways are DCl (v = 0; j = 6-9) + C2H2 (v(2) = 1; j = 1-5). These and previously reported data on the related C2H2-HCl species are analysed using the angular momentum (AM) method. Calculations accurately reproduce fragment rovibrational distributions following dissociation of the C2H2-HCl dimer initiated either by excitation of the asym C-H stretch or via the HCl stretch, and those from C2H2-DCl initiated via asym C-H stretch excitation. The calculations demonstrate that the dimer is bent at the moment of dissociation. Several geometries are found that lead to H-bond breakage via a clearly identified set of fragment quantum states. The results suggest a hierarchy in the disposal of excess energy and angular momentum between fragment vibration, rotation and recoil. Deposition of the largest portion of energy into a C2H2 vibrational state sets an upper limit on HCl rotation, which then determines the energy and AM remaining for C2H2 rotation and fragment recoil. Acceptor C2H2 vibrational modes follow a previously noted propensity, implying that the dissociating impulse must be able to induce appropriate nuclear motions both in the acceptor vibration and in rotation of the C2H2 fragment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available