4.2 Article

Solution structure of a novel D-ss-naphthylalanine substituted peptide with potential antibacterial and antifungal activities

Journal

BIOPOLYMERS
Volume 88, Issue 5, Pages 738-745

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/bip.20736

Keywords

antimicrobial peptide; micelle; CD; fluorescence; NMR; structure

Ask authors/readers for more resources

A new type of Trp-rich peptide, Ac-KWRRWVRWI-NH2, designated. as Pac-525, was found to possess improved activity against both gram-positive and negative bacteria. We have synthesized two Pac-525 analogues, D-Pac-525 containing all D-amino acids and D-Nal-Pac-525, the D-Pac-525 analogue with tryptophan replaced by D-P naphthylalanine. We have determined the solution structure of D-Nal-Pac-525 bound to membrane-mimetic DPC micelles by two-dimensional NMR methods. The DPC micelle-bound structure of D-Nal-Pac-525 adopts a left-hand alpha-helical segment and the positively charged residues are clustered together to form a hydrophilic patch. The surface electrostatic potential map indicates the three D-beta-naphthylala nines are packed against the peptide backbone and form an amphipathic structure. A variety of biophysical and biochemical experiments, including circular dichroism, fluorescence spectroscopy, and microcalorimetry, were used to show that D-Nal-Pac-525 interacted strongly with negatively charged phospholipid vesicles and induced efficient dye release from these vesicles, suggesting that the strong antimicrobial activity of D-Nal-Pac-525 may be due to interactions with bacterial and fungus membranes. (c) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available