4.8 Article

Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier

Ask authors/readers for more resources

Power efficiencies > 60% have been predicted for idealized quantum dot (QD) intermediate band solar cells. This goal has not yet been realized, due in part to nonidealities that result in charge trapping followed by recombination of photocarriers in the QDs, and the lack of an optimal materials combination. To eliminate charge trapping, a p(+)-i-n(+) cell employing QDs buried within a high band gap barrier layer is proposed and analyzed. The maximum solar power conversion efficiency under AM1.5 spectral radiation of an example GaAs-based photovoltaic cell employing 10-20 layers of InAs QDs surrounded by AlxGa1-xAs barriers in the junction built-in depletion region can be as high as 45%. Higher efficiencies are anticipated for InP-based cells. This represents a significant improvement over GaAs homojunction cells with maximum efficiencies of < 25%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available