4.8 Article

Membrane bioreactor process for removing biodegradable organic matter from water

Journal

WATER RESEARCH
Volume 41, Issue 17, Pages 3880-3893

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2007.06.010

Keywords

ozone; membrane bioreactor; membrane biological reactor; AOC; AOC(P17); AOC(NOX); THM precursor; DOC; BDOC biological filtration; activated carbon; adsorption

Ask authors/readers for more resources

This research investigated a membrane bioreactor (MBR) process for removing biodegradable organic matter (BOM) and trihalomethane (THM) precursors from pre-ozonated water. Bench-scale and mini-pilot-scale MBR experiments were conducted using powdered activated carbon (PAC) and acclimated biomass. Dissolved organic carbon (DOC) was removed through a combination of adsorption and biodegradation mechanisms, and the initial DOC removals depended on carbon dose, while steady-state removals were in the 20-60 percent range under various operating conditions. Both assimilable organic carbon (AOC) and total aldehydes were mostly removed to near detection limits and were not affected by PAC dosage. The AOC(NOX) removals were significantly higher than AOC(P17) or total AOC removals probably because the MBR microbial consortium was closer in characteristics to Aquaspirillum NOX than to Pseudomonas fluorescens (P17). The DOC was used instead of biodegradable organic carbon (BDOC) as a parameter for evaluating disinfection byproduct formation and bacterial regrowth potentials because BDOC assays did not yield consistent and conclusive results due to analytical difficulties. The removals of THM precursors were high when PAC was added; however, steady-state removals were a function of operating conditions and PAC dosage. Addition of PAC enhanced DOC removals and membrane permeate fluxes. Furthermore, pre-ozonation reduced membrane fouling and enhanced membrane permeate flux. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available