4.6 Article

Quantum transport simulation of experimentally fabricated nano-FinFET

Journal

IEEE TRANSACTIONS ON ELECTRON DEVICES
Volume 54, Issue 4, Pages 784-796

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2007.892353

Keywords

contact-block reduction (CBR) method; FinFET; gate leakage; quantum transport

Ask authors/readers for more resources

We have utilized the contact-block-reduction (CBR) method, which we extended to allow a charge self-consistent scheme, to simulate experimentally fabricated 10-nm-FinFET device. The self-consistent CBR simulator has been modified to simulate devices with channels along arbitrary crystallographic orientation. A series of fully quantum-mechanical transport simulations has been performed. First, the fin extension length and doping profile have been calibrated to match the experimental data. The process control window for the threshold voltage as a function of fin extension has been extracted for the considered device. Then, a set of transfer characteristics and gate leakage currents have been calculated for different drain voltages. The simulation results have been found to be in good agreement with the experimental data in the subthreshold regime. The device turn-off and turn-on behavior has been examined for different fin widths: 12 (experimental), 10, 8, and 6 nm. Finally, the subthreshold slope degradation at high temperatures has been studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available