4.7 Article

Effects of probiotic Lactobacillus Paracasei treatment on the host gut tissue metabolic profiles probed via magic-angle-spinning NMR spectroscopy

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 6, Issue 4, Pages 1471-1481

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr060596a

Keywords

colon; duodenum; HRMAS H-1 NMR spectroscopy; ileum; intact tissue; intestine; jejunum; Lactobacillus paracasei; metabolomics; metabonomics; chemometrics; O-PLS-DA

Ask authors/readers for more resources

We have used a simplified gnotobiotic mouse model to evaluate the effects of single bacterial species, Lactobacillus paracasei NCC2461, on the metabolic profiles of intact intestinal tissues using high-resolution magic-angle-spinning H-1 NMR spectroscopy (HRMAS). A total of 24 female gnotobiotic mice were divided into three groups: a control group supplemented with water and two groups supplemented with either live L. paracasei or a gamma-irradiated equivalent. HRMAS was used to characterize the biochemical components of intact epithelial tissues from the duodenum, jejunum, ileum, proximal, and distal colons in all animals and data were analyzed using chemometrics. Variations in relative concentrations of amino acids, anti-oxidant, and creatine were observed relating to different physiological properties in each intestinal tissue. Metabolic characteristics of lipogenesis and fat storage were observed in the jejunum and colon. Colonization with live L. paracasei induced region-dependent changes in the metabolic profiles of all intestinal tissues, except for the colon, consistent with modulation of intestinal digestion, absorption of nutrients, energy metabolism, lipid synthesis and protective functions. Ingestion of gamma-irradiated bacteria produced no effects on the observed metabolic profiles. H-1 MAS NMR spectroscopy was able to generate characteristic metabolic signatures reflecting the structure and function of intestinal tissues. These signals acted as reference profiles with which to compare changes in response to gut microbiota manipulation at the tissue level as demonstrated by ingestion of a bacterial probiotic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available