4.7 Article

A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 50, Issue 1-2, Pages 303-319

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2006.06.012

Keywords

droplet evaporation; Volume of Fluid Method; kinetic theory; Leidenfrost temperature

Ask authors/readers for more resources

A numerical investigation of the evaporation process of n-heptane and water liquid droplets impinging onto a hot substrate is presented. Three different temperatures are investigated, covering flow regimes below and above Leidenfrost temperature. The Navier-Stokes equations expressing the flow distribution of the liquid and gas phases, coupled with the Volume of Fluid Method (VOF) for tracking the liquid-gas interface, are solved numerically using the finite volume methodology. Both two-dimensional axisymmetric and fully three-dimensional domains are utilized. An evaporation model coupled with the VOF methodology predicts the vapor blanket height between the evaporating droplet and the substrate, for cases with substrate temperature above the Leidenfrost point, and the formation of vapor bubbles in the region of nucleate boiling regime. The results are compared with available experimental data indicating the outcome of the impingement and the droplet shape during the impingement process, while additional information for the droplet evaporation rate and the temperature and vapor concentration fields is provided by the computational model. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available