4.6 Article

Robust regenerative chatter stability in machine tools

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-006-0778-x

Keywords

regenerative chatter; robust stability theorem; zero exclusion theorem

Ask authors/readers for more resources

The expeditious nature of manufacturing markets inspires advancements in the effectiveness, efficiency and precision of machining processes. Often, an unstable machining phenomenon, called regenerative chatter, limits the productivity and accuracies in machining operations. Since the 1950s, a substantial amount of research has been conducted on the prevention of chatter vibration in machining operations. In order to prevent regenerative chatter vibrations, the dynamics between the machine tool and workpiece are critical. Conventional regenerative chatter theories have been established based on the assumption that the system parameters in machining are constant. However, the dynamics and system parameters change due to high spindle speeds, tool geometries, orientation of the tool with respect to the rest of the machine, tool wear and non-uniform workpiece material properties. This paper provides a novel method, based on the robust stability theorem, to predict chatter-free regions for machining processes, by taking in account the unknown uncertainties and changing dynamics for machining. The effects of time-variant parameters on the stability are analyzed using the robust stability theorem. The experimental tests are performed to verify the stability of SDOF and MDOF milling systems. The uncertainties and changing dynamics are taken into account in order to accommodate the optimal selection of machining parameters, and the stability region is determined to achieve high productivity and accuracy through applications of the robust stability theorem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available