4.5 Article

Toll-like receptor (TLR4) shedding and depletion: acute proximal tubular cell responses to hypoxic and toxic injury

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 292, Issue 1, Pages F304-F312

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00237.2006

Keywords

acute renal failure; iron; oxidant stress; cisplatin; biomarkers

Funding

  1. NIDDK NIH HHS [R01-DK-68520-03, R37-DK-38432-20] Funding Source: Medline
  2. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK068520, R37DK038432] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Acute renal failure (ARF) induces tubular hyperresponsiveness to TLR4 ligands, culminating in exaggerated renal cytokine/chemokine production. However, the fate of TLR4 protein during acute tubular injury remains unknown. The study sought new insights into this issue. Male CD- 1 mice were subjected to 1) unilateral ischemia-reperfusion (I/R), 2) cisplatin (CP) nephrotoxicity, or 3) glycerol-induced myohemoglobinuric ARF. Renal cortical TLR4 protein (Western blotting, immunohistochemistry) and TLR4 mRNA levels (RT-PCR) were determined thereafter (90 min-4 days). Urinary TLR4 excretion post-I/R or CP injection was also assessed. To gain proximal tubule-specific results, TLR4 protein and mRNA were quantified in posthypoxic or oxidant (Fe)-challenged isolated mouse tubules. Finally, TLR4 mRNA was determined in antimycin A-injured cultured proximal tubular (HK-2) cells. Acute in vivo renal injury reduced proximal tubule TLR4 content. These changes corresponded with the appearance of TLR4 fragment(s) in urine and a persistent increase in renal cortical TLR4 mRNA. Isolated proximal tubules responded to injury with rapid TLR4 reductions, dramatic extracellular TLR4 release, and increases in TLR4 mRNA. Glycine blocked these processes, implying membrane pore formation was involved. HK-2 cell injury increased TLR4 mRNA, but not protein levels, suggesting intact transcriptional, but not translational, pathways. Diverse forms of acute tubular injury rapidly reduce proximal tubular TLR4 content. Plasma membrane TLR4 release through glycine-suppressible pores, possibly coupled with a translation block, appears to be involved. Rapid postinjury urinary TLR4 excretion suggests its potential utility as a biomarker of impending ARF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available