4.4 Article

Effect of dietary fish oil supplementation on cellular adhesion molecule expression and tissue myeloperoxidase activity in diabetic mice with sepsis

Journal

BRITISH JOURNAL OF NUTRITION
Volume 97, Issue 4, Pages 685-691

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0007114507450310

Keywords

diabetes' sepsis; fish oil; cellular adhesion molecule; myeloperoxidase

Ask authors/readers for more resources

This study investigated the effect of n-3 fatty acids on adhesion molecules and tissue myeloperoxidase (MPO) activity in diabetic mice with sepsis. Diabetes was induced by a streptozotocin injection. Mice with blood glucose levels exceeding 2000 mg/l were considered diabetic. Diabetic mice were assigned to two groups with a medium-fat (10 %, w/w) diet either provided by soyabean oil (SO, n 30) or fish oil (FO, n 30). n-3 fatty acids provided 4.3 % of the total energy and the n-3/n-6 fatty acid ratio was 1:2 in the FO diet. After feeding the respective diet for 3 weeks, all mice had sepsis induced by caecal ligation and puncture (CLP) and were killed at 0, 6 or 24 h after CLP, with ten mice at each time-point. The result showed that compared with the SO group, FO group had lower PGE(2) and TNF-alpha levels in peritoneal lavage fluid after CLP. Lymphocyte CD11a/CD18 expressions were higher at 6 h, whereas the percentage was lower at 24 h in the SO group than in the FO group. Neutrophil CD11b/CD18 expressions were significantly higher in the SO group than in the FO group at Oh. The FO group had lower organ MPO activities at various time-points after CLP when compared with those of the SO group. The present findings suggest that compared with the diabetic mice fed SO, a low-dose n-3 fatty acid supplementation may attenuate leucocyte adhesion and infiltration into tissues in diabetic mice complicated with sepsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available