4.7 Review

Urea and renal function in the 21st century: Insights from knockout mice

Journal

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
Volume 18, Issue 3, Pages 679-688

Publisher

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2006101108

Keywords

-

Funding

  1. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [Z01HL001285] Funding Source: NIH RePORTER
  2. Intramural NIH HHS [Z01 HL001285-21, Z99 HL999999] Funding Source: Medline

Ask authors/readers for more resources

Since the turn of the 21st century, gene knockout mice have been created for all major urea transporters that are expressed in the kidney: the collecting duct urea transporters UT-A1 and UT-A3, the descending thin limb isoform UT-A2, and the descending vasa recta isoform UT-B. This article discusses the new insights that the results from studies in these mice have produced in the understanding of the role of urea in the urinary concentrating mechanism and kidney function. Following is a summary of the major findings: (1) Urea accumulation in the inner medullary interstitium depends on rapid transport of urea from the inner medullary collecting duct (IMCD) lumen via UT-A1 and/or UT-A3; (2) as proposed by Robert Berliner and colleagues in the 1950s, the role of IMCD urea transporters in water conservation is to prevent a urea-induced osmotic diuresis; (3) the absence of IMCD urea transport does not prevent the concentration of NaCl in the inner medulla, contrary to what would be predicted from the passive countercurrent multiplier mechanism in the form proposed by Kokko and Rector and Stephenson; (4) deletion of UT-B (vasa recta isoform) has a much greater effect on urinary concentration than deletion of UT-A2 (descending limb isoform), suggesting that the recycling of urea between the vasa recta and the renal tubules quantitatively is less important than classic countercurrent exchange; and (5) urea reabsorption from the IMCD and the process of urea recycling are not important elements of the mechanism of protein-induced increases in GFR. In addition, the clinical relevance of these studies is discussed, and it is suggested that inhibitors that specifically target collecting duct urea transporters have the potential for clinical use as potassium-sparing diuretics that function by creation of urea-dependent osmotic diuresis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available