4.6 Article

Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza

Journal

NEW PHYTOLOGIST
Volume 175, Issue 3, Pages 554-564

Publisher

WILEY
DOI: 10.1111/j.1469-8137.2007.02107.x

Keywords

abscisic acid; arbuscular mycorrhiza; ethylene; sitiens; tomato (Lycopersicon esculentum)

Categories

Ask authors/readers for more resources

The role of abscisic acid (ABA) during the establishment of the arbuscular mycorrhiza (AM) was studied using ABA sitiens tomato (Lycopersicon esculentum) mutants with reduced ABA concentrations. Sitiens plants and wild-type (WT) plants were colonized by Glomus intraradices. Trypan blue and alkaline phosphatase histochemical staining procedures were used to determine both root colonization and fungal efficiency. Exogenous ABA and silver thiosulfate (STS) were applied to establish the role of ABA and putative antagonistic cross-talk between ABA and ethylene during AM formation, respectively. Sitiens plants were less susceptible to the AM fungus than WT plants. Microscopic observations and arbuscule quantification showed differences in arbuscule morphology between WT and sitiens plants. Both ABA and STS increased susceptibility to the AM fungus in WT and sitiens plants. Fungal alkaline phosphate activity in sitiens mutants was completely restored by ABA application. The results demonstrate that ABA contributes to the susceptibility of tomato to infection by AM fungi, and that it seems to play an important role in the development of the complete arbuscule and its functionality. Ethylene perception is crucial to AM regulation, and the impairment of mycorrhiza development in ABA-deficient plants is at least partly attributable to ethylene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available