4.7 Article

Quantitative analysis of chromosome conformation capture assays (3C-qPCR)

Journal

NATURE PROTOCOLS
Volume 2, Issue 7, Pages 1722-1733

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nprot.2007.243

Keywords

-

Funding

  1. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [R01HG003143] Funding Source: NIH RePORTER
  2. NHGRI NIH HHS [HG003143] Funding Source: Medline

Ask authors/readers for more resources

Chromosome conformation capture (3C) technology is a pioneering methodology that allows in vivo genomic organization to be explored at a scale encompassing a few tens to a few hundred kilobase-pairs. Understanding the folding of the genome at this scale is particularly important in mammals where dispersed regulatory elements, like enhancers or insulators, are involved in gene regulation. 3C technology involves formaldehyde fixation of cells, followed by a polymerase chain reaction (PCR)-based analysis of the frequency with which pairs of selected DNA fragments are crosslinked in the population of cells. Accurate measurements of crosslinking frequencies require the best quantification techniques. We recently adapted the real-time TaqMan PCR technology to the analysis of 3C assays, resulting in a method that more accurately determines crosslinking frequencies than current semiquantitative 3C strategies that rely on measuring the intensity of ethidium bromide-stained PCR products separated by gel electrophoresis. Here, we provide a detailed protocol for this method, which we have named 3C-qPCR. Once preliminary controls and optimizations have been performed, the whole procedure (3C assays and quantitative analyses) can be completed in 7-9 days.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available