4.6 Article

Numerical modeling of non-adiabatic heat-recirculating combustors

Journal

PROCEEDINGS OF THE COMBUSTION INSTITUTE
Volume 31, Issue -, Pages 3277-3284

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2006.08.082

Keywords

micro-combustion; heat-recirculating combustors; extinction limits

Ask authors/readers for more resources

A two-dimensional numerical model of spiral counterflow heat recirculating combustors was developed including the effects of temperature-dependent gas and solid properties, viscous flow, surface-to-surface radiative heat transfer, heat conduction within the solid structure, one-step chemical reaction and heat loss from the combustor to its surroundings. A simplified model of heat loss in the 3rd dimension was implemented and found to provide satisfactory representation of such losses at greatly reduced computational cost compared to fully three-dimensional models. The model predicts broad reaction zones with structure decidedly different from conventional premixed flames. Extinction limits were determined over a wide range of Reynolds numbers (2 < Re < 5000) for propane-air mixtures. These limits showed reasonable quantitative agreement with experiments. Comparison of steady and unsteady calculations suggests there are no stability limits apart from these extinction limits. At Re > 500, modeling of turbulent flow and transport was required to obtain such agreement. Heat conduction along the heat exchanger wall has a major impact extinction limits; the wall thermal conductivity providing the broadest limits is actually less than that of air. Radiative heat transfer between walls was found to have an effect similar to that of heat conduction along the wall. In addition to weak-burning extinction limits, strong-burning limits in which the reaction zone moves out of the combustor center toward the inlet were also predicted by the numerical model, in agreement with experiments. It is concluded that several physical processes including radiative transfer, turbulence and wall heat conduction strongly affect the performance of heat-recirculating combustors, but the relative importance of such effects is strongly dependent on Re. (c) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available