4.7 Article

Zinc and the cytoskeleton in the neuronal modulation of transcription factor NFAT

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 210, Issue 1, Pages 246-256

Publisher

WILEY
DOI: 10.1002/jcp.20861

Keywords

-

Funding

  1. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH &HUMAN DEVELOPMENT [R01HD001743] Funding Source: NIH RePORTER
  2. NICHD NIH HHS [HD01743] Funding Source: Medline

Ask authors/readers for more resources

Transcription factor NFAT is crucial in the development of the nervous system due to its role in neuronal plasticity and survival. In this study we characterized the role of zinc and the cytoskeleton in the modulation of NFAT in neuronal cells. The incubation of cells in zinc deficient media led to NFAT activation that was inhibited by the calcium chelator BAPTA and the antioxidants W-a-lipoic acid and N-acetyl cysteine, suggesting the involvement of calcium and oxidants in the initial steps of NFAT activation associated with zinc deficiency. At a second step of regulation, a decrease in cellular zinc led to an impaired transport of the active NFAT from the cytosol into the nucleus due to alterations in tubulin polymerization secondary to a decrease in neuronal zinc. Furthermore, disruption of the cytoskeleton structure by cold and chemical agents (colchicine (Col), vinblastine (VB), cytochalasin D (Cyt)) also inhibited NFAT transport into the nucleus. The altered nuclear transport caused a decrease in NFAT-dependent gene expression. This study demonstrates for the first time that zinc can modulate transcription factor NFAT in neuronal cells, and that microtubules are involved in NFAT nuclear translocation, crucial event in the regulation of NFAT transcriptional activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available