4.6 Article

Simulation of spray combustion in a lean-direct injection combustor

Journal

PROCEEDINGS OF THE COMBUSTION INSTITUTE
Volume 31, Issue -, Pages 2327-2334

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2006.07.232

Keywords

spray; combustion; LES; Lagrangian; PVC

Ask authors/readers for more resources

Large-eddy simulation (LES) of a liquid-fueled lean-direct injection (LDI) combustor is carried out by resolving the entire inlet flow path through the swirl vanes and the combustor. A localized dynamic subgrid closure is combined with a subgrid mixing and combustion model so that no adjustable parameters are required for both non-reacting and reacting LES. Time-averaged velocity predictions compare well with the measured data. The unsteady flow features that play a major role in spray dispersion, fuel-air mixing and flame stabilization are identified from the simulation data. It is shown that the vortex breakdown bubble (VBB) is smaller with more intense reverse flow when there is heat release. The swirling shear layer plays a major role in spray dispersion and the VBB provides an efficient flameholding mechanism to stabilize the flame. (C) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available