4.7 Article

Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line: A possible in vitro model of human mesenchymal progenitors

Journal

STEM CELLS
Volume 25, Issue 1, Pages 125-131

Publisher

WILEY
DOI: 10.1634/stemcells.2006-0295

Keywords

mesenchymal stem cells; multilineage differentiation; Nestin; Oct-4; osteoprogenitor; cell line

Ask authors/readers for more resources

The in vitro study of human bone marrow mesenchymal stromal cells (BMMSCs) has largely depended on the use of primary cultures. Although these are excellent model systems, their scarcity, heterogeneity, and limited lifespan restrict their usefulness. This has led researchers to look for other sources of MSCs, and recently, such a population of progenitor/stem cells has been found in mesodermal tissues, including bone. We therefore hypothesized that a well-studied and commercially available clonal human osteoprogenitor cell line, the fetal osteoblastic 1.19 cell line (hFOB), may have multilineage differentiation potential. We found that undifferentiated hFOB cells possess similar cell surface markers as BMMSCs and also express the embryonic stem cell-related pluripotency gene, Oct-4, as well as the neural progenitor marker nestin. hFOB cells can also undergo multilineage differentiation into the mesodermal lineages of chondrogenic and adipocytic cell types in addition to its predetermined pathway, the mature osteoblast. Moreover, as with BMMSCs, under neural-inducing conditions, hFOB cells acquire a neural-like phenotype. This human cell line has been a widelyused model of normal osteoblast differentiation. Our data suggest that hFOB cells may provide for researchers an easily available, homogeneous, and consistent in vitro model for study of human mesenchymal progenitor cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available