4.6 Article

Shock-tube and modeling study of ethyl methyl ether pyrolysis and oxidation

Journal

PROCEEDINGS OF THE COMBUSTION INSTITUTE
Volume 31, Issue -, Pages 313-320

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2006.08.074

Keywords

shock tube; ethyl methyl ether; reaction mechanism; high temperature

Ask authors/readers for more resources

Pyrolysis and oxidation of ethyl methyl ether (EME) were studied behind reflected shock waves in the temperature range 900-1750 K at total pressures between 0.9 and 3.1 atm. The study was carried out using following methods, (1) time-resolved IR-laser absorption at 3.39 mu m for EME decay and CH-compound formation rates, (2) time-resolved UV absorption at 216 nm for mainly CH3 radical formation rate, (3) time-resolved UV absorption at 306.7 nm for OH radical formation rate, (4) time-resolved IR emission at 4.24 pm for CO2 formation rate and (5) a single-pulse technique for product yields. The pyrolysis and oxidation of EME were modeled using a reaction mechanism including the sub-mechanisms for methane, acetylene, ethylene, ethane, formaldehyde, acetaldehyde and ketene oxidation. The reaction mechanism used in this study could reproduce almost all of experimental results. The sub-mechanisms of methane, ethylene, ethane, formaldehyde, and acetaldehyde were found to play an important role in EME oxidation. (C) 2006 Published by Elsevier Inc. on behalf of The Combustion Institute.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available