4.6 Article

Day length affects the dynamics of leaf expansion and cellular development in Arabidopsis thaliana partially through floral transition timing

Journal

ANNALS OF BOTANY
Volume 99, Issue 4, Pages 703-711

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcm005

Keywords

Arabidopsis thaliana; day length; leaf expansion rate; duration of expansion; cell division; flowering

Categories

Ask authors/readers for more resources

Background and Aims Plant aerial development is well known to be affected by day length in terms of the timing and developmental stage of floral transition. Arabidopsis thaliana is a 'long day' plant in which the time to flower is delayed by short days and leaf number is increased. The aim of the work presented here was to determine the effects of different day lengths on individual leaf area expansion. The effect of flower emergence per se on the regulation of leaf expansion was also tested in this study. Methods Care was taken to ensure that day length was the only source of micro-meteorological variation. The dynamics of individual leaf expansion were analysed in Ler and Col-0 plants grown under five day lengths in five independent experiments. Responses at cellular level were analysed in Ler plants grown under various day lengths and treatments to alter the onset of flowering. Key Results When the same leaf position was compared, the final leaf area and both the relative and absolute rates of leaf expansion were decreased by short days, whereas the duration of leaf expansion was increased. Epidermal cell number and cell area were also altered by day-length treatments and some of these responses could be mimicked by manipulating the date of flowering. Conclusions Both the dynamics and cellular bases of leaf development are altered by differences in day length even when visible phenotypes are absent. To some extent, cell area and its response to day length are controlled by whole plant control mechanisms associated with the onset of flowering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available